Prediction of Regional Hydrology and Snowpack

Presented by

Sarah B. Kapnick

Societal & Modeling Impacts of Snowpack

Water Supply / Flood Risk

- 50-80% of water supply in the western US comes in the form of snowmelt; states like California only have liquid water reservoir capacity for 1/4th-1/5th of all winter precipitation
- Water must be released to the ocean to avoid flooding during big storms or on warm days

Hydropower

 Hydropower follows snowmelt runoff; a shift towards an earlier spring leads to earlier maximum power output, and less power in late summer/ fall

Changes in Albedo

- Reduced snow cover can reduce surface albedo
- Albedo feedbacks during the melt season can intensify spring warming

Increased Fire Risk

 Early snowmelt increases wildfire frequency by as much as 3x over median snowmelt timing

Source: Westerling et al. 2006 (fire); Madani and Lund 2010 (hydropower); Dettinger et al. 2009 (flood risk)

The difficulty of snow modeling

- Over a flat surface:
 - Snowfall: Snow falling from the sky requires modeling temperature and precipitation well
 - Snowpack: Snow on the ground requires modeling temperature, precipitation, and snowmelt
- Over complex terrain:
 - The same requirements above in addition to a high enough resolution to generate topographic variability:
 - Orographic effects
 - Freezing temperatures in the mid- and low-latitudes (e.g. the western US)

CMIP5: General Snowfall Patterns

- There is a general pattern of annual snowfall loss in the midlatitudes and gains in the high-latitudes under RCP4.5
- Hatches represent statistical significance in the plot

CMIP5 Snowfall Trend (2006-2100)

Source: Krasting et al. 2013 (GFDL paper)

Resolution Dependence of Snowfall

- Under double-CO2
 conditions compared to
 1990, the same general
 patterns of changes in
 snowfall as Krasting et
 al. (2013) emerge
- Moving from 200km (CMIP5 mean) to 50km resolution results in signs of snowfall flipping over high-elevation regions (Yukon, Andes, Northern Pakistan)

Source: Kapnick and Delworth 2013

CM2.5 Doubled-CO2 Snowfall Change

Figure used by the Associated Press for a story (e.g. Washington Post, USA Today); 150+ stories total Source: Kapnick and Delworth 2013

Elevation Enhancement of CM2.5

3000

3500

CM2.5 (50km resolution)

CM2.1 (200km resolution)

- The Himalayas provide a nice case study of improved snowfall modeling with a high-resolution model over a high-elevation region
- For simple comparison from previous work, we reproduce elevation from CM2.5 vs.
 CM2.1 (close to CMIP5 average resolution)

4000

4500

5000

5500 +

Three Main Snowy Regions

Source: Kapnick e al. 2014

Translation to Seasonal Cycle

The Third Pole Hydrologic Change

- Snow cover declines across all 3 regions, however at a significantly lower rate in the NW
- Significantly higher annual variability across the Central and Eastern regions

Summary

Factor	High Resolution Model (CM2.5)	Low Resolution Models (CM2.1 & CMIP5)
Global Snowfall	↑ High Latitudes↓ Low Latitudes	↑ High Latitudes ↓ Low Latitudes
Select Highest-Elevation Snowfall Under Climate Change	↑ N. Pakistan, Yukon, Andes	Following zonal patterns
Seasonal Cycle in Greater Himalaya Region	Colder More Snow	Warmer Less Snow

This is an important first step of validation to develop seasonaldecadal predictions and highlights the need for a high-resolution land/atmosphere for snowpack and hydrology in snowy regions

References

- Dettinger et al., 2009, California Climate Change Center. CEC-500-2009-050-D.
- Kapnick, S. B., and T. L. Delworth, 2013: Controls of global snow under a changed climate. *J. Climate*, 26, 5537–5562.
- Kapnick, S., Delworth, T., Ashfaq, M., Malyshev, S., Milly, P.C.D., 2014: On the origin of different snowfall signals across the Karakoram and Himalaya. Submitted.
- Krasting, John P., Anthony J. Broccoli, Keith W. Dixon, John R. Lanzante, 2013: Future Changes in Northern Hemisphere Snowfall. *J. Climate*, 26, 7813–7828.
- Madani, K., and Lund, J. R., 2010, Climatic Change, 102(3), 521-538.
- Westerling et al., 2006, Science, 313, 940-943.

